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Deformed and extended Galilei group Hopf algebras

J A de Azćarraga and J C Ṕerez Bueno
Departamento de Fı́sica Téorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, 46100-
Burjassot, Valencia, Spain

Received 7 June 1996

Abstract. The κ̂-deformed extended Galilei Hopf group algebra, Funκ̂ (G̃(m)), is introduced.
It provides an explicit example of a deformed group with cocycle bi-crossproduct structure,
and is shown to be the contraction limit of a pseudoextension of theκ-Poincaŕe group algebra.
The possibility of obtaining other deformed extended Galilei groups is discussed, including one
obtained from a non-standard Poincaré deformation.

1. Introduction

In a recent paper [1] we have discussed the ‘non-relativistic’ contractions of the deformedκ-
Poincaŕe algebra [2], using the pseudoextension mechanism [3, 4] to search for anextended
deformed Galilei algebra. In short, this process explains how a trivial (direct product)
extension by the phase group may lead by contraction to a non-trivial central extension or, in
other words, how a two-coboundary may generate a non-trivial two-cocycle by contraction.
In the Lie algebra case, the pseudoextension mechanism explains, for instance, how the
direct productP × u(1), whereP is the Poincaŕe algebra, may lead to the extended Galilei
algebraG̃(m); other interesting examples may be given both in the undeformed and the
deformed case [5].

A result of the analysis in [1] is that there are two possible contractions of theκ-Poincaŕe
algebra [2]Pκ ≡ Uκ(P) depending on how the constantc is hidden inκ, since the standard
c → ∞ limit (κ unaltered) leads to theundeformedGalilei Hopf algebraU(G).

(a) Uκ̃ (G). If the deformation parameterκ (which has dimensions of inverse length,
[κ] = L−1) is replaced bỹκ/c in Pκ ([κ̃] = T −1), the usual redefinitions (Pi = Xi, P0 ≡
Xt/c,Ni = cVi with [Xt ] = T −1, [X] = L−1, [V ] = L−1T ) in Uκ(P) lead in thec → ∞
contraction limit to the Hopf algebraGκ̃ ≡ Uκ̃ (G) given by

[Ji, Jj ] = εijkJk [Ji, Xj ] = εijkXk [Ji, Xt ] = 0

[Ji, Vj ] = εijkVk [Xi,Xt ] = 0 [Xi,Xj ] = 0

[Vi,Xt ] = Xi [Vi,Xj ] = δij
1

2κ̃
X2 − 1

κ̃
XiXj [Vi, Vj ] = 0

1Xt = Xt ⊗ 1 + 1 ⊗Xt 1Xi = Xi ⊗ 1 + exp(−Xt/κ̃)⊗Xi

1Ji = Ji ⊗ 1 + 1 ⊗ Ji 1Vi = Vi ⊗ 1 + exp(−Xt/κ̃)⊗ Vi + εijk

κ̃
Xj ⊗ Jk

S(Xt) = −Xt S(Xi) = − exp(Xt/κ̃)Xi

S(Ji) = −Ji S(Vi) = − exp(Xt/κ̃)Vi + 1

κ̃
εijk exp(Xt/κ̃)XjJk

(1.1)
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ε(all) = 0. This algebra (found in [6] in another basis) has been shown to have [1] a
bi-crossproduct [7] structure:Uκ̃ (G) = U(R ◦B)FJUκ̃ (T r4) = HFJA so thatA = Uκ̃ (T r4)
is the time(Xt ) and space(Xi) translations Hopf subalgebra ofUκ̃ (G) andH = U(R ◦ B)
is the undeformed Hopf algebra generated by the rotations(Ji) and boosts(Vi) (here and
in the rest of the paper, we shall use the generic notationK = HFJA to denote the (right
F< / left >J) bi-crossproduct structure [7] ofK).

(b) Uκ̂ (G̃(m)). If κ is replaced byκ̂c ([κ̂] = L−2T ), the κ-Poincaŕe algebraUκ(P)
still leads by contraction to the undeformed Galilei Hopf algebraU(G). However, this
redefinition of the deformation parameter allows us to obtain a non-trivial deformation if
the contraction is now performed on a pseudoextension ofPκ , Uκ(P) × U(u(1)). The
result [1] is theκ̂-deformedextended Galilei algebrãG(m)κ̂ ≡ Uκ̂ (G̃(m)), where the mass
parameterm is introduced, as in the undeformed case, through the two-coboundary defining
the pseudoextension. Denoting by4 the additional (eleventh) central generator, the Hopf
structure ofUκ̂ (G̃(m)) is given by the commutators of the undeformed Hopf algebraU(G̃(m)),
primitive coproducts etc, but for the exceptions given below:

[Vi,Xj ] = δij
κ̂

2
(1 − exp(2m4)/κ̂) 1Xi = Xi ⊗ 1 + exp(m4/κ̂)⊗Xi

1Vi = Vi ⊗ 1 + exp(m4/κ̂)⊗ Vi S(Xi) = − exp(−m4/κ̂)Xi
S(Vi) = − exp(−m4/κ̂)Vi.

(1.2)

The additional generator4 has the dimensions of inverse on an action; nevertheless it may
be rendered dimensionless (in a quantum context) multiplying it by the Planck constant ¯h.
The Casimir operators forUκ̃ (G) andUκ̂ (G̃(m)) were also found in [1]. Since settinĝκ = 0 in
(1.2) the undeformed Hopf algebra structure of the enveloping algebraU(G̃(m)) is recovered
(and, in particular, [Vi,Xj ] = −mδij4), we see that the deformation enters in (1.2) only
through the central generator. In fact, it may be shown [1, 8] thatUκ̂ (G̃(m)) has the (right–left)
cocycle bi-crossproduct [7] structureUκ̂ (G̃(m)) = U(G)ψFJξ(m)U(u(1)), where the rightU(G)-
module action (F<) α (within the generic notationHψFJξA, α(a⊗h) ≡ a Gh = aεH(h)) of
G(m) on u(1) is taken to be trivial since4 is central inUκ̂ (G̃(m)) and the leftu(1)-comodule
coaction (>J) β is given by

β(Xi) = exp(m4/κ̂)⊗Xi β(Vi) = exp(m4/κ̂)⊗ Vi (1.3)

(β is trivial onXt , Ji , i.e. β(Xt) = 1⊗Xt, β(Ji) = 1⊗Ji). The cocycleξ(m) may be taken
to satisfy†

ξ(m)(Vi, Xj )− ξ(m)(Xj , Vi) = δij
κ̂

2

(
1 − exp

(
2m4

κ̂

))
(1.4)

and, finally, ψ : U(G) → U(u(1)) ⊗ U(u(1)) is trivial (for HψFJξA, triviality means
ψ(h) = 1A ⊗ 1Aε(h)). We note that the above structure is not the only one possible.
It may be seen, for example, thatUκ̂ (G̃(m)) is also the bi-crossproductHFJA of the
commutative Hopf subalgebraA = Uκ̂ (T̃ r4) of Uκ̂ (G̃(m)) generated by〈Xt,Xi,4〉 and
the undeformed Hopf algebraH = U(R ◦ B) generated by〈Vi, Ji〉, with right action
α : Uκ̂ (T̃ r4)⊗U(R ◦B) → Uκ̂ (T̃ r4) and left coactionβ : U(R ◦B) → Uκ̂ (T̃ r4)⊗U(R ◦B)

† In [1, 8] ξ(m) was taken to be antisymmetric (cf (1.4)) but we wish to be less restrictive here (this freedom is
related with the election of coboundary as we shall discuss in the next section).
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given by

Xt G Vi = −Xi Xi G Vj = −δij κ̂
2
(1 − exp(2m4/κ̂)) 4 G Vi = 0

Xt G Ji = 0 Xi G Jj = εijkJk 4 G Ji = 0 β(Vi) = exp(m4/κ̂)⊗ Vi

β(Ji) = 1 ⊗ Ji.

(1.5)

The existence of more than one structure for a deformed Hopf algebra, as is the case for an
ordinary Lie algebra, is not uncommon; see [5].

Deformed Newtonian and enlarged Newtonian spacetimes may be introduced by looking
at the dualsNκ̃ andÑκ̂ of the commutative Hopf subalgebrasUκ̃ (T r4), Uκ̂ (T̃ r4) of Uκ̃ (G)
[(1.1)] and Uκ̂ (G̃(m)) generated by〈Xt,Xi〉 and 〈Xt,Xi,4〉 respectively. If a differential
calculus covariant under rotations and boosts is now introduced, it turns out [1] that the
full commutativity for the contraction diagrams, which involve the differential calculus [9]
on theκ-Minkowski space [10–12], is obtained only for the extended Newtonian spacetime
Ñκ̂ . Although the addition of a (non-invariant) one-form to0(Nκ̃ ) allows us to solve
the rotations/boosts covariance equations, this new form cannot be interpreted (unlike in
0(Ñκ̂ )) as the differential of an additional variable. This, as the previous discussion, poses
the question of whether it is possible to find an extended deformed Galilei algebra for the
κ̃-deformation as is the case forUκ̂ (G̃(m)). At the same time, it is convenient to have the
dual or ‘group-like’ expressions (Funκ̃ (G), Fun̂κ(G̃(m))) of the above deformed algebras and
to look at the closure of the contraction diagrams involving the deformed Poincaré Hopf
group algebra Funκ(P ). We shall address and answer these questions here, including for
completeness the treatment of the non-standard deformations of the Poincaré group algebra
in (1 + 1) dimensions and its Galilean contractions. Besides describing possible deformed
Galilean groups, our discussion will also provide some examples of deformed groups of
the cocycle bi-crossproduct type, a structure of which very few [13] examples are known,
especially from the group (rather than algebra) point of view.

2. The extended deformed Galilei group Fun̂κ(G̃(m))

Since Uκ̂ (G̃(m)) has a cocycle bi-crossproduct [7] structure, its dual Funκ̂ (G̃(m)) also has
this structure. In fact, the dualK = Hξ̄IGψ̄A of K = HψFJξA, where H and
A are the duals ofH and A, is determined by the dual operations (β̄, ᾱ, ψ̄, ξ̄ ) of
(α, β, ξ, ψ). Quite often the deformation properties of a deformed Hopf algebraK with
the generic structureK = HψFJξA are mostly described by those among the mappings
α : A ⊗ H → A, β : H → A ⊗ H, ξ : H ⊗ H → A, ψ : H → A ⊗ A which
involve the deformation parameter. As a result, the dual deformed Hopf group algebra
K = Hξ̄IGψ̄A may be found in an easier way by looking for the respective dual maps
(β̄ : A → A⊗H, ᾱ : A⊗H → H (ᾱ : a⊗h 7→ a F̄h), ψ̄ : A → H⊗H andξ̄ : A⊗A → H )
than by direct computation or from ‘quasi-classical’ bialgebra structure considerations, since
H andA are either undeformed or known. In these cases, the dualization process may be
performed in individually simpler steps.

Since the cocycle bi-crossproduct structure of the deformed extended Galilei algebra
Uκ̂ (G̃(m)) was found forα andψ trivial, β̄ and ξ̄ are also trivial, and only the duals̄α and
ψ̄ of β (equation (1.3)) andξ (equation (1.4)), respectively, need to be determined since
H = Fun(G) andA = Fun(U(1)) are undeformed. Since the rotation part in the Galilei
group is not important in the discussion, we shall restrict ourselves initially to one spatial
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dimension. The commutative, non-cocommutative Hopf algebra structure of Fun(G(1+1))
is obvious:

[t, v] = 0 [x, v] = 0 [t, x] = 0

1t = 1 ⊗ t + t ⊗ 1 1x = 1 ⊗ x + x ⊗ 1 − t ⊗ v 1v = v ⊗ +1 ⊗ v

S(t) = −t S(x) = −x − vt S(v) = −v ε(t, x, v) = 0

(2.1)

where the group algebra generatorst (x) correspond to the time (space) translation andv

to the boost. The duality relations are

〈X, x〉 = 1 〈Xt, t〉 = 1 〈V, v〉 = 1 (2.2)

the others being zero. To determine Funκ̂ (G̃(m)) we introduce an additional generatorχ
dual to4, 〈4,χ〉 = 1, with 1χ = χ ⊗ 1 + 1 ⊗ χ, S(χ) = −χ, ε(χ) = 0. Then, using
equation (1.3) and relations such as〈V, χ F̄ v〉 ≡ 〈V, ᾱ(χ ⊗ v)〉 = 〈β(V ), χ ⊗ v〉, the left
action ᾱ (F̄) dual toβ is immediately seen to be

χ F̄ t = 0 χ F̄ x = m

κ̂
x χ F̄ v = m

κ̂
v. (2.3)

Finding the dual cocyclēψ of ξ requires a more careful analysis. Since, as mentioned,
explicit examples [13, 1, 5] of cocycle bi-crossproduct constructions for deformed Hopf
algebras are rather scarce, we shall provide it with some detail. Recalling thatξ :
U(G)⊗ U(G) → U(u(1)), let us take

ξ(V,X) = B(4) ξ(X, V ) = B(4)− κ̂

2

(
1 − exp

(
2m4

κ̂

))
(2.4)

(so that (1.4) is satisfied), whereB(4) is as yet undetermined. Since [V,Xt ] = X, it follows
that

ξ(V, VXt)− ξ(V,XtV ) = B(4)

ξ(VXt , V )− ξ(XtV , V ) = B(4)− κ̂

2

(
1 − exp

(
2m4

κ̂

))
.

(2.5)

We may now use the two-cocycle condition [14, 7] onξ to obtain more information. Since
the right actionα (G) was trivial, this condition reduces to

ξ(h(1)g(1) ⊗ f )ξ(h(2) ⊗ g(2)) = ξ(h⊗ g(1)f(1))ξ(g(2) ⊗ f(2)) (2.6)

whereh, g, f ∈ U(G). Assuming the natural normalizationξ(h ⊗ 1) = ξ(1 ⊗ h) = 1ε(h)
and ξ(1 ⊗ 1) = 1, the application of (2.6) to the Galilei algebra generators, which have
primitive coproducts, reduces it toξ(hg ⊗ f ) = ξ(h⊗ gf ). Thus, we have, in particular,

ξ(VXt , V ) = ξ(V,XtV ) ≡ A(4) (2.7)

introducing a new unknown function. Then, with

〈B(4), χ〉 = B 〈A(4), χ〉 = A (2.8)

we find, besides equations (2.5) and (2.7), the relations

ξ(V, VXt) = A(4)+ B(4) = ξ(V 2, Xt )

ξ(Xt , V
2) = A(4)− B(4)+ κ̂

2

(
1 − exp

(
2m4

κ̂

))
.

(2.9)

Now, using that〈
κ̂

2

(
1 − exp

(
2m4

κ̂

))
, χ

〉
= −m 〈VXt, vt〉 = 1 〈V 2, v2〉 = 2
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the dualψ̄ of ξ is found to be

ψ̄(χ) = A[ 1
2v

2 ⊗ t + vt ⊗ v + v ⊗ vt + 1
2t ⊗ v2] + B[v ⊗ x + x ⊗ v + v ⊗ vt

+ 1
2v

2 ⊗ t − 1
2t ⊗ v2] +m[x ⊗ v − 1

2t ⊗ v2]. (2.10)

The last bracket is recognized as a form of the Galilei non-trivial two-cocycle [15]; since the
first two depend on the constantsA andB, they must correspond to two-coboundaries. This
may be trivially checked in a Lie group language if we think of the terms on the right-hand
side of (2.10) as the product of the unprimed and primed group parameters defining the
standard group two-cocycle,ω(g, g′) say. In this way, it is seen that the first two brackets
are generated by the one-cochainsη(g) = − 1

2v
2t and η(g) = − 1

2v
2t − vx, respectively,

throughωcob(g, g
′) = η(g) + η(g′) − η(gg′). Thus, we need not worry here about the

cocycle condition forψ̄ , although we shall come back to it in section 3. We shall only
note now that, in the present Hopf algebra context, the condition expressing thatψ̄ is a
coboundary is translated into

ψ̄cob(χ) = 1 ⊗ γ (χ)+ γ (χ(1))⊗ χ(2) −1(γ (χ))

= 1 ⊗ γ (χ)+ γ (χ)⊗ 1 −1(γ (χ)) (2.11)

where γ is a linear mappingγ : A → H which is convolution invertible (i.e. there
exists γ−1 such thatγ (a(1))γ−1(a(2)) = γ−1(a(1))γ (a(2)) = ε(a)); γ (χ) is given by
− 1

2v
2t [− 1

2v
2t − vx] for the first [second] bracket in (2.10). Ignoring the coboundaries,

we thus find that Fun̂κ(G̃(m)) is defined by equations (2.1) to which one has to add those
dictated by (2.3), i.e.

[χ, t ] = 0 [χ, x] = m

κ̂
x [χ, v] = m

κ̂
v (2.12)

the two cocycle (2.10), the last term of which modifies the primitive coproduct1χ to read

1χ = χ ⊗ 1 + 1 ⊗ χ +m(x ⊗ v − 1
2t ⊗ v2) (2.13)

and the antipode and counit ofχ ,

S(χ) = −χ +m(xv + 1
2tv

2) ε(χ) = 0. (2.14)

As expected fromUκ̂ (G̃(m)), the non-commutative nature of Funκ̂ (G̃(m)) only shows up in
the commutation properties (2.12) of the additional generatorχ .

Moving now to(1+ 3) dimensions by including the rotations is not difficult. The only
modified coproducts and antipodes are

1xi = 1 ⊗ xi + xj ⊗ R
j

i − t ⊗ vi 1vi = 1 ⊗ vi + vj ⊗ R
j

i

S(xi) = −xj (R−1)
j

i − tvj (R
−1)

j

i S(vi) = −vj (R−1)
j

i

(2.15)

and equations such as (2.2) and (2.12)–(2.14) acquire the appropriate vector indices (for
instance,S(χ) = −χ + m[xv + 1

2tv
2].) As for Rji , it commutes with all other group

algebra generators,(1R)i j = Rik ⊗ Rkj , and its presence modifies the cocycle to read

ψ̄(χ) = m(xi ⊗ Rijv
j − 1

2t ⊗ v2). (2.16)

If the angle-like generatorϕ = χ/h̄ is used, Fun̂κ(G̃(m)) may be rightly called thedeformed
quantum-mechanical Galilei group.
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3. Funκ̂(G̃(m)) as a contraction of a pseudoextension ofPκ̂ (Funκ̂(P ))

Consider theκ-Poincaŕe group algebraPκ ≡ Funκ(P ) in (1 + 1) dimensions [16, 12]. It is
defined by the relations

[x1, x0] = x1

κ
[α, x0] = 1

κ
sinhα [α, x1] = − 1

κ
(coshα − 1) (3.1)

(wherex0 = ct (x1) refers to time (space) andα characterizes the boost in thex direction)
and by

1α = α ⊗ 1 + 1 ⊗ α 1x0 = 1 ⊗ x0 + x0 ⊗ coshα − x1 ⊗ sinhα

1x1 = 1 ⊗ x1 − x0 ⊗ sinhα + x1 ⊗ coshα

S(α) = −α S(x0) = −x0 coshα − x1 sinhα

S(x1) = −x1 coshα − x0 sinhα ε(α, x0, x1) = 0.

(3.2)

Introduce now the commutative, co-commutative Hopf algebra generated by a new generator
χ̂ with dimensions of an action, such that

[χ̂ , all] = 0 1χ̂ = χ̂ ⊗ 1 + 1 ⊗ χ̂ S(χ̂) = −χ̂ ε(χ̂) = 0. (3.3)

If we now make the redefinitionχ = χ̂−mcx0 using the one-cochainmcx0 (which diverges
in the contraction limit) it follows that

1χ = χ ⊗ 1 + 1 ⊗ χ −mc[x0 ⊗ (coshα − 1)− x1 ⊗ sinhα]

S(χ) = −χ +mc[x0(coshα − 1)+ x1 sinhα].
(3.4)

In terms ofχ , the commutators in (3.3) imply

[χ, x0] = 0 [χ, x1] = mc

κ
x1 [χ, α] = mc

κ
sinhα (3.5)

and we see again that in order to have a sensible contraction limit we need to substitute
κ̂c for κ, in which case equations (2.12) and (2.13) are recovered (α ∼ v/c) and hence
Funκ̂ (G̃(m)). Thus, there is full duality and closure among the algebra-like contraction
diagrams forUκ̂ (G̃(m)) [1] and the group-like ones for Funκ̂ (G̃(m)).

A question that naturally arises is whether we can construct a similar extended group
algebra from the Galilei deformation Funκ̃ (G) dual of Uκ̃ (G), equations (1.1). AsUκ̃ (G),
Funκ̃ (G) has a bi-crossproduct structure so that the dualization (in two dimensions) of
U(B)FJUκ̃ (T r2) leads immediately to Funκ̃ (G(1 + 1)) as (cf (2.1))

[t, x] = − 1

κ̃
x [x, v] = v2

2κ̃
[t, v] = −v

κ̃

1t = t ⊗ 1 + 1 ⊗ t 1x = x ⊗ 1 + 1 ⊗ x − t ⊗ v 1v = v ⊗ 1 + 1 ⊗ v

S(t, x, v) = (−t,−x − vt,−v) ε(t, x, v) = 0.

(3.6)

Let us add a Fun(U(1)) factor to Fuñκ(G) (a similar discussion could be presented for
Uκ̃ (G)). Since we want the corresponding algebra generator to be central inUκ̃ (G), α has
to be trivial and hence its dual̄β is also trivial. The two-cocycle condition for the map
ψ̄ : A → H ⊗H (hereA = Fun(U(1)),H = Funκ̃ (G)) may be found as a consequence of
the co-associativity requirement. It is given by [7]

1ψ̄(a(1))
(1)ψ̄(a

(1)
(2) )⊗ ψ̄(a(1))

(2)a
(2)
(2) = ψ̄(a(1))

(1) ⊗1ψ̄(a(1))
(2)ψ̄(a(2)) (3.7)

where the lower indices refer to the coproduct and the upper ones refer either toβ̄

(β̄(a) = a(1) ⊗ a(2) ∈ A ⊗ H ) or to the components of̄ψ (ψ̄(a) = ψ̄(a)(1) ⊗ ψ̄(a)(2)).
Since the right co-action̄β is trivial in our case,a(1) = a, a(2) = 1. Moreover, since
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ψ̄(1) = 1H ⊗ 1H and1a = a⊗ 1+ 1⊗ a, i.e.1χ = χ ⊗ 1+ 1⊗χ , equation (3.7) reduces
to

1ψ̄(χ)(1) ⊗ ψ̄(χ)(2) + ψ̄(χ)⊗ 1 = ψ̄(χ)(1) ⊗1ψ̄(χ)(2) + 1 ⊗ ψ̄(χ) (3.8)

(it is easy to check, we note in passing, that (2.16) for Funκ̂ (G̃(m)) satisfies condition (3.8)).
Thus, in the search for a Funκ̃ (G) we have to look for aψ̄(χ) which in the undeformed
limit must reduce to the last term in (2.10). The usual dimension assignments (which we
have consistently kept) indicate that aκ̃-deformation of the Galilei two-cocycle (last bracket
in (2.10)) may be described by

ψ̄κ̃ = ψ̄(χ)

(
1 ⊗ f

(
mv2

h̄κ̃

))
. (3.9)

Omitting the constants we may now impose the two-cocycle condition (3.8)–(3.9) written
as ψ̄κ̃ ∝ x ⊗ vf (v2)− 1

2t ⊗ v2f (v2). This leads to

1x ⊗ vf (v2)− 1
21t ⊗ v2f (v2)+ x ⊗ vf (v2)⊗ 1 − 1

2t ⊗ v2f (v2)⊗ 1
= x ⊗1(vf (v2))− 1

2t ⊗1(v2f (v2))+ 1 ⊗ x ⊗ vf (v2)

− 1
21 ⊗ t ⊗ v2f (v2) (3.10)

which implies

1(vf (v2)) = 1 ⊗ vf (v2)+ vf (v2)⊗ 1

1(v2f (v2)) = 1 ⊗ v2f (v2)+ v2f (v2)⊗ 1 + 2v ⊗ vf (v).
(3.11)

These equations are inconsistent with the form of1v in (3.6) and among each other unless
f is constant. Thus,̄ψ is unmodified byκ̃ and1χ is again given by (2.13). We may
now try to complete the commutation relations in (3.6) with those forχ by imposing that
the coproduct (as given by (3.6) and (2.13)) is an algebra homomorphism. Notice that
the addition of a two-cocycle does not modify the expressions (3.6); only the commutators
involving χ and1χ need to be found. The result is that there is no solution in the presence
of κ̃ if the constantf is non-zero†. This agrees with the fact that nõκ-deformation of the
Hopf algebraU(G̃(m)) can be obtained fromUκ(P)× U(u(1)) by contraction [1].

4. Structure of the non-standard (1 + 1) deformed Poincaŕe group and their Galilean
contractions

A non-standard deformationUh(P) of the Poincaŕe Hopf algebra may be obtained by
contraction from theUh(sl(2,R)) deformation [18, 19] and has been recently studied [20–
22]. We shall show first that it has a bi-crossproduct structure and then study its Galilean
contractions.

In a ‘light-cone’ basisUρ(P(1+ 1)) (ρ is the parameter remaining after the contraction
limit ε → 0 which is performed after settingh = ερ, [ε] = L−1 = [ρ−1]) may be written
in the form

[N,P+] = 1 − exp(−2ρP+)
2ρ

[N,P−] = −P− [P+, P−] = 0

1P+ = P+ ⊗ 1 + 1 ⊗ P+ 1P− = exp(−2ρP+)⊗ P− + P− ⊗ 1

1P− = exp(−2ρP+)⊗N +N ⊗ 1 S(N) = − exp(2ρP+)N
S(P+) = −P+ S(P−) = − exp(2ρP+)P− ε(N, P±) = 0.

(4.1)

† This result disagrees with that in [17] in as much as the projective representations of Funκ̃ (G) are related to a
two-cocycle Hopf group algebra extension (which is not discussed there).
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Uρ(P(1+ 1)) has a bi-crossproduct structureK = HFJA where in this caseH is generated
by N with primitive coproduct andA is the Abelian Hopf subalgebra ofUρ(P(1 + 1))
generated by the translationsP±, the right actionα : A ⊗ H → A and left coaction
β : H → A ⊗ H being given, respectively, by

P+ GN = −1 − exp(−2ρP+)
2ρ

P− GN = P− β(N) = exp(−2ρP+)⊗N. (4.2)

We may easily see, for example, that the formulae which give the coproduct and antipode
in K [7],

1K(h⊗ a) = h(1) ⊗ h
(1)
(2) a(1) ⊗ h

(2)
(2) ⊗ a(2)

S(h⊗ a) = (1H ⊗ SA(h
(1)a))(SH(h

(2))⊗ 1A)
(4.3)

immediately reproduce1N andS(N) (N is represented inK byN⊗1 and, in equation (4.3),
N(1) = exp(−2ρP+), N(2) = N by (4.2) etc). It is simple to construct by duality
(〈P±, x±〉 = 1) the associated non-standard(1 + 1) spacetime Hopf algebra, which is
defined by the relations

[x+, x−] = −2ρx− 1x± = x± ⊗ 1 + 1 ⊗ x± S(x±) = −x± ε(x±) = 0.
(4.4)

We are interested here, however, in constructing the whole dual Hopf algebra
Funρ(G(1 + 1)) and its possible extension, and in obtaining them from Funρ(P (1 + 1)).
Denoting the variable dual toN by α, 〈N, α〉 = 1, and using the fact thatUρ(P(1 + 1)) is
a bi-crossproduct, the duals̄β of α and ᾱ (F̄) of β are found to be

β̄(x±) = x± ⊗ e∓α x+ F̄α = −2ρ(1 − e−α) x− F̄α = 0 (4.5)

(to find, e.g.,x+ F̄α one needs consideringβ for powers ofN , β(Nm)). In this way the
non-standard Poincar´e Hopf algebraFunρ(P (1 + 1)) is found to be

[x+, α] = −2ρ(1 − e−α) [x−, α] = 0 [x+, x−] = −2ρx−
1x+ = 1 ⊗ x+ + x+ ⊗ e−α 1x− = 1 ⊗ x− + x− ⊗ eα

1α = α ⊗ 1 + 1 ⊗ α S(x+) = −x+ eα

S(x−) = −x− e−α S(α) = −α ε(x±, α) = 0

(4.6)

which reproduces [22, 20].
We now find thenon-standard deformed Galilei groupFunρ(G(1+ 1)). In terms of the

standard (x0 = x+ + x−, x1 = x+ − x−) basis, Funρ(P (1 + 1)) is given by

[x0, α] = −2ρ(1 − e−α) [x1, α] = −2ρ(1 − e−α)
[x0, x1] = 2ρ(x0 − x1)

1α = α ⊗ 1 + 1 ⊗ α 1x0 = 1 ⊗ x0 + x0 ⊗ coshα − x1 ⊗ sinhα

1x1 = 1 ⊗ x1 − x0 ⊗ sinhα + x1 ⊗ coshα

S(α) = −α S(x0) = −x0 coshα − x1 sinhα

S(x1) = −x1 coshα − x0 sinhα ε(α, x0, x1) = 0

(4.7)

which reproduces, in the co-algebra sector, the standardP(1 + 1) group law. The non-
standard deformation Funρ(G(1+1)) now follows from thec → ∞ limit for x0 = ct, x1 = x

andα ∼ v/c, with the result

1t = 1 ⊗ t + t ⊗ 1 1x = 1 ⊗ x + x ⊗ 1 − t ⊗ v 1v = 1 ⊗ v + v ⊗ 1

[t, v] = 0 [x, v] = −2ρv [t, x] = 2ρt

S(t) = −t S(x) = −x − vt S(v) = −v.
(4.8)
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The dual algebra,Uρ(G(1 + 1)), is easily found to be

[Xt,X] = 0 [Xt, V ] = − 1

4ρ
(1 − exp(−4ρX)) [X,V ] = 0

1Xt = Xt ⊗ 1 + exp(−2ρX)⊗Xt 1X = 1 ⊗X +X ⊗ 1

1V = V ⊗ 1 + exp(−2ρX)⊗ V S(Xt) = − exp(2ρX)Xt
S(X) = −X S(V ) = − exp(2ρX)V ε(Xt ,X, V ) = 0.

(4.9)

It is not a new Hopf algebra; it is the deformed Heisenberg–Weyl algebraUρ(HW) (the
quantum Heisenberg groupHq(1) of [23]), and it has both a bi-crossproduct and a cocycle
bi-crossproduct structure [5].

To complete the picture, it is interesting to close the contraction diagrams by obtaining
Uρ(G(1 + 1)) (= Uρ(HW)), equations (4.9), by contractingUρ(P(1 + 1)) in (4.1) by
means of the standard redefinitions. It turns out, however, that the naı̈ve change of
basis (P0 = 1

2(P+ + P−), P1 = 1
2(P+ − P−)) from light cone to standard variables

is not adequate, and that a more complicated one (which may be justified [22] in
terms of T matrix [24] considerations) is required to perform the contraction, namely,
P+ = P0 + P1, P− = (1/2ρ)[exp(−2ρ(P0 + P1))+ 1 − 2 exp(−2ρP0)]. In terms of these
P0,1 generators the algebraUρ(P(1 + 1)) is more complicated than in (4.1), but may be
seen to lead toUρ(G(1 + 1)), equations (4.9), in the contraction limit.

Finally, we may look for anon-standard extended Galilei group. This can be obtained
following the by now familiar procedure, which involves the addition ofχ̂ as in (3.3), and
the redefinitionχ̂ = χ +mcx0. Then (4.7) leads to (3.4) and to

[χ, x0] = 0 [χ, x1] = −2mcρ(x0 − x1) [χ, α] = 2mcρ(1 − e−α). (4.10)

Equations (4.10) show that the contraction requires a redefinition of the deformation
constant, ρ = ρ̂/c2, [ρ̂] = L3T −2. This leads to Fun̂ρ(G̃(m)(1 + 1)) defined by
equations (2.1) and (2.13) together with

[χ, t ] = 0 [χ, x] = −2mρ̂t [χ, v] = 0. (4.11)

Funρ̂ (G̃(m)(1 + 1)) is a very mild deformation, only manifest in the [χ, x] commutator.
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