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Abstract. The k-deformed extended Galilei Hopf group algebra, ,F(Ld?ym)), is introduced.

It provides an explicit example of a deformed group with cocycle bi-crossproduct structure,
and is shown to be the contraction limit of a pseudoextension of {Reincaé group algebra.

The possibility of obtaining other deformed extended Galilei groups is discussed, including one
obtained from a non-standard Poineateformation.

1. Introduction

In a recent paper [1] we have discussed the ‘non-relativistic’ contractions of the defermed
Poincaé algebra [2], using the pseudoextension mechanism [3, 4] to search éstended
deformed Galilei algebra. In short, this process explains how a trivial (direct product)
extension by the phase group may lead by contraction to a non-trivial central extension or, in
other words, how a two-coboundary may generate a non-trivial two-cocycle by contraction.
In the Lie algebra case, the pseudoextension mechanism explains, for instance, how the
direct productP x u(1), whereP is the Poinca algebra, may lead to the extended Galilei
algebraé(m); other interesting examples may be given both in the undeformed and the
deformed case [5].

A result of the analysis in [1] is that there are two possible contractions ef-BP@ncaé
algebra [2]P, = U, (P) depending on how the constanis hidden in«, since the standard
¢ — oo limit (« unaltered) leads to thendeformedGalilei Hopf algebra/(G).

(8) Uz (G). If the deformation parametar (which has dimensions of inverse length,
[«] = L71) is replaced by /c in P, ([k] = T~1), the usual redefinitions” = X;, Py =
X,/c, N; = c¢V; with [X,] = T%[X] = L1 [V] = L7IT) in U (P) lead in thec — oo
contraction limit to the Hopf algebré@; = U; (G) given by

[Ji, Jj] = €ijidi [Ji, X;] = €iju X [/, X;]=0
[Ji. Vi] = €ijiVi [Xi,X:]=0 [Xi. X;]=0
1 1

[Vi, Xi] = X; [Vi, Xj1 = 8j = X* = ZXiX; [Vi,Vi]=0
AX, =X, ®1+1®X, AX; = X; ® 1+ exp(—X,/k) ® X; (1.1)
A=Ui®1+18J  AVi=V,@1l+exp—X,/0)® Vi + XX o J

K

S(Xy) ==X, S(Xi) = —expX, /) X;
SUi) = —Ji S(Vi) = —exp(X,/k)Vi + %eijk exp(X; /i) X J

0305-4470/96/196353+10$19.5@C) 1996 IOP Publishing Ltd 6353
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e(all) = 0. This algebra (found in [6] in another basis) has been shown to have [1] a
bi-crossproduct [7] structuréf; (G) = U(R o B)al; (T rs) = H4A S0 thatA = Uz (Try)
is the time(X,) and spac€X;) translations Hopf subalgebra &of (G) and’H = /(R o B)
is the undeformed Hopf algebra generated by the rotatidnsand boostqV;) (here and
in the rest of the paper, we shall use the generic notéfica H~<«.A to denote the (right
< [ left >«) bi-crossproduct structure [7] df).

(b) up(g“(m)). If « is replaced bykc ([k] = L~2T), the k-Poincaé algebralf, (P)
still leads by contraction to the undeformed Galilei Hopf algetd@). However, this
redefinition of the deformation parameter allows us to obtain a non-trivial deformation if
the contraction is now performed on a pseudoextensio®Qfif (P) x U(u(1)). The
result [1] is thek-deformedextended Galilei algebrg,,; = U (G(n)), where the mass
parametern is introduced, as in the undeformed case, through the two-coboundary defining
the pseudoextension. Denoting Bythe additional (eleventh) central generator, the Hopf
structure ofif; (G(m)) is given by the commutators of the undeformed Hopf algémé(m)),
primitive coproducts etc, but for the exceptions given below:

Vi, X;] = 5,,%(1— exp(2mE)/k) AX; = X; @ 1+ expmE/R) ® X;

AV, = Vi@ 1+ expmE/R) @ Vi S(X)) = —exp—mE/i) X 1.2)

S(Vi) = —exp(—mE/k) V.

The additional generatdg has the dimensions of inverse on an action; nevertheless it may
be rendered dimensionless (in a quantum context) multiplying it by the Planck cohastant —
The Casimir operators f@f; (G) andif; (Q(m)) were also found in [1]. Since settikg= 0 in

(1.2) the undeformed Hopf algebra structure of the enveloping al@étsfa,)) is recovered
(and, in particular, V;, X;] = —mé;; E), we see that the deformation enters in (1.2) only
through the central generator. In fact, it may be shown [1, 8]&@@(,,,)) has the (right—left)
cocycle bi-crossproduct [7] structurg (é(m)) = L{(g)‘ﬁm%u(u(l)), where the right/(G)-
module actions<) o (within the generic notatiof{” >« A, a(a ® h) = a<h = aey(h)) of

Gom Onu(l) is taken to be trivial sinc& is central inu,;(.C’;(m)) and the leftu(1)-comodule
coaction («) B is given by

B(Xi) = expmE/k) ® X; B(V;) = expmE/k) ® V; (1.3)

(Bis trivial on X,, J; , i.e. B(X,) = 1®X,, B(J;)) = 1® J;). The cocycle&,,) may be taken
to satisfy

% 2mE
Emy(Vi, Xj) =& (X;, Vi) = 51‘]‘% (1 - EXp<,2>) (1.4)

and, finally, v : U(G) — Um() ® Uu(L)) is trivial (for HY <A, triviality means
Y(h) = 14 ® 14¢(h)). We note that the above structure is not the only one possible.
It may be seen, for example, théa;(g(m)) is also the bi-crossproduct{~«.4 of the
commutative Hopf subalgebrd = U; (Tr4) of U; (g(m)) generated by(X,, X;, ) and
the undeformed Hopf algebra = U(R o B) generated by(V;, J;), with right action
o U (Try) QU(Ro B) — Uy (Tr4) and left coactiorB : UU(RoB) — Uy (Trs) QU(Ro B)

1 In [1,8] &) was taken to be antisymmetric (cf (1.4)) but we wish to be less restrictive here (this freedom is
related with the election of coboundary as we shall discuss in the next section).
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given by

X, <V = —X, x[<\/,=—3[,%(1—exp(2ma//2)) T4V, =0

X;<J; =0 Xi<1Jj=€iijk ExJ; =0 ﬂ(V,):eXp(mE//%)(@Vl (15)
BN =1® J;.

The existence of more than one structure for a deformed Hopf algebra, as is the case for an
ordinary Lie algebra, is hot uncommon; see [5].

Deformed Newtonian and enlarged Newtonian spacetimes may be introduced by looking
at the dualsV; and N; of the commutative Hopf subalgebras(Trs), Uz (Tr4) of Uz (G)
[(1.1)] andu,g(é(m)) generated by X;, X;) and (X, X;, E) respectively. If a differential
calculus covariant under rotations and boosts is now introduced, it turns out [1] that the
full commutativity for the contraction diagrams, which involve the differential calculus [9]
on thex-Minkowski space [10-12], is obtained only for the extended Newtonian spacetime
Nz. Although the addition of a (non-invariant) one-form F(\;) allows us to solve
the rotations/boosts covariance equations, this new form cannot be interpreted (unlike in
I'(NV;)) as the differential of an additional variable. This, as the previous discussion, poses
the question of whether it is possible to find an extended deformed Galilei algebra for the
k-deformation as is the case fbd;;(gN(m)). At the same time, it is convenient to have the
dual or ‘group-like’ expressions (Fu(G), Fur};(é(m))) of the above deformed algebras and
to look at the closure of the contraction diagrams involving the deformed Péirttapf
group algebra Fy(P). We shall address and answer these questions here, including for
completeness the treatment of the non-standard deformations of the Bajnocap algebra
in (1+ 1) dimensions and its Galilean contractions. Besides describing possible deformed
Galilean groups, our discussion will also provide some examples of deformed groups of
the cocycle bi-crossproduct type, a structure of which very few [13] examples are known,
especially from the group (rather than algebra) point of view.

2. The extended deformed Galilei group Fu;a(f;’(m))

Sinceu;(é(m)) has a cocycle bi-crossproduct [7] structure, its dual ;E&r@n)) also has
this structure. In fact, the duak = H:»<"A of K = HYc«:A, where H and
A are the duals ofH and A, is determined by the dual operationg, &, v, ) of
(a, B, &, ¥). Quite often the deformation properties of a deformed Hopf algébnaith
the generic structurédC = H">«:A are mostly described by those among the mappings
a  AQH > AB H—> AQH,E: HOH — A Y : H > A® A which
involve the deformation parameter. As a result, the dual deformed Hopf group algebra
K = Hgm‘/’A may be found in an easier way by looking for the respective dual maps
(B:A— A®H,a: AQH — H (@ :a®h+ a5h), ¥ :A— HRH andé : AQA — H)
than by direct computation or from ‘quasi-classical’ bialgebra structure considerations, since
H and A are either undeformed or known. In these cases, the dualization process may be
performed in individually simpler steps.

Since the cocycle bi-crossproduct structure of the deformed extended Galilei algebra
L&(Q}m)) was found fora and v trivial, 8 and& are also trivial, and only the duads and
¥ of B (equation (1.3)) and (equation (1.4)), respectively, need to be determined since
H = Fun(G) and A = Fun(U (1)) are undeformed. Since the rotation part in the Galilei
group is not important in the discussion, we shall restrict ourselves initially to one spatial
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dimension. The commutative, non-cocommutative Hopf algebra structure o&Fus- 1))
is obvious:

[t,v] =0 [x,v]=0 [t,x] =0

At=1Qr+1t®1 Ax=1®x+x®1—tQuv Av=v®+1®v (2.2)
S@) = —t S(x) = —x — vt S(w) =—v e(t,x,v) =0

where the group algebra generatoréc) correspond to the time (space) translation and
to the boost. The duality relations are

(X,x)=1 (X, 1) =1 (V,v) =1 (2.2)

the others being zero. To determine Eaﬁ(m)) we introduce an additional generatgr
dualto &, (E,x) =1, withAy = x®1+1Q® x,S(x) = —x,€(x) = 0. Then, using
equation (1.3) and relations such @ x >v) = (V,a(x ® v)) = (B(V), x ® v), the left
actiona (5) dual to 8 is immediately seen to be
x5t =0 X&x:ix X&v:iv. (2.3)
K K

Finding the dual cocycle of & requires a more careful analysis. Since, as mentioned,
explicit examples [13,1,5] of cocycle bi-crossproduct constructions for deformed Hopf
algebras are rather scarce, we shall provide it with some detail. Recallings that
UG @ UG) — Uu(L)), let us take

¢ omE
£(V, X) = B(E) £(X, V)= B(E) — % (1 — exp(le)) (2.4)

(so that (1.4) is satisfied), wheB( E) is as yet undetermined. Sincg,[X,] = X, it follows
that

£V, VX)) —§(V,X,V) = B(E)

R 2mE (2.5)
E(VX,, V) —E(X,V, V):B(a)—2<1—exp( p ))

We may now use the two-cocycle condition [14, 7] &to obtain more information. Since
the right actiona (<) was trivial, this condition reduces to

E(hwga @ HéEhe ®ge) = ®gunfuwéEe @ fz) (2.6)

whereh, g, f € U(G). Assuming the natural normalizatidgis ® 1) = £(1® h) = le(h)
and&(1® 1) = 1, the application of (2.6) to the Galilei algebra generators, which have
primitive coproducts, reduces it tohg ® f) = &(h ® gf). Thus, we have, in particular,

EVX,,V)=§(V,X,V)=A(E) (2.7)
introducing a new unknown function. Then, with
(B(E), x) =B (A(B), x)=A (2.8)

we find, besides equations (2.5) and (2.7), the relations
E(V.VX,) = A(B) + B(E) =£(V? X))

K B 2.9
§<Xf,v2)=A(s>—B(E)+’;(1—exp<2”f )) (2-9)

K

Now, using that

<'; (1—exp<2";3>>,x>=—m (VX vt) =1 (V2,02 =2
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the dualy of £ is found to be

1/_f()():A[%v2®t+vt®v+v®vt+%t®v2]+B[v®x+x®v+v®vt
+3¥®t— @ v]+mlx®v— @i (2.10)

The last bracket is recognized as a form of the Galilei non-trivial two-cocycle [15]; since the
first two depend on the constamsand B, they must correspond to two-coboundaries. This
may be trivially checked in a Lie group language if we think of the terms on the right-hand
side of (2.10) as the product of the unprimed and primed group parameters defining the
standard group two-cocycley(g, g’) say. In this way, it is seen that the first two brackets
are generated by the one-cochaif(g) = —%vzz andn(g) = —%vzt — vx, respectively,
through weon(g, &) = n(g) + n(g’) — n(gg’). Thus, we need not worry here about the
cocycle condition fory, although we shall come back to it in section 3. We shall only
note now that, in the present Hopf algebra context, the condition expressing tisag
coboundary is translated into

Yeo(X) =1y () + ¥ (xP) @ x?@ — Ay (x))
=10y +ry(xX)®1— A(y(x)) (2.11)

where y is a linear mappingy : A — H which is convolution invertible (i.e. there
exists y =1 such thaty(aw)y ap) = vy Haw)y(ae) = €@)); y(x) is given by
—%vzt [—%vzt — vx] for the first [second] bracket in (2.10). Ignoring the coboundaries,

we thus find that FU;I”'(G(,,,)) is defined by equations (2.1) to which one has to add those
dictated by (2.3), i.e.

m m
[x.1]=0 . x] = —x [x.v]=—v (2.12)
K K
the two cocycle (2.10), the last term of which modifies the primitive coprodycto read
Ax=x®1+1®@x +mx ®v— 3t ® v?) (2.13)
and the antipode and counit @f,
S(X) = —x +m@xv + 31v%) e(x) =0. (2.14)

As expected fronuk(C;(m)), the non-commutative nature of F,?l.(lf;(m)) only shows up in
the commutation properties (2.12) of the additional generator

Moving now to (1 + 3) dimensions by including the rotations is not difficult. The only
modified coproducts and antipodes are

Axi=1®x,~—|—xj®Rji—t®vi Av,-=1®vi+vj®Rji (2.15)
S(xi) = —x;(R™Y, — rv;(R7YY, S(i) = —v; (R, '

and equations such as (2.2) and (2.12)—(2.14) acquire the appropriate vector indices (for
instance,S(x) = —x + m[xv + %tvz].) As for R’,, it commutes with all other group
algebra generatorgAR)"j =R, ® R"j, and its presence modifies the cocycle to read

V(x) =m@x; ® R v/ — 3t @ v?). (2.16)

If the angle-like generatap = y /A is used, Fup(G,,,) may be rightly called theleformed
guantum-mechanical Galilei group
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3. Fung((?(m)) as a contraction of a pseudoextension aP; (Fung(P))

Consider thec-Poincaé group algebra®, = Fun.(P) in (1+ 1) dimensions [16, 12]. It is
defined by the relations

[x1, xo] = % [, x0] = %sinha [, x1] = —%(cosm 1) (3.1
(wherexg = ct (x;) refers to time (space) and characterizes the boost in thedirection)
and by

A=a®1+1Q« Axp=1® xg + xg ® coshe — x; ® sinha

Ax1 = 1® x1 — xg ® Sinha + x1 ® coshu

S(a) = —« S(xg) = —xpcoshe — x; Sinha

S(x1) = —x; coshe — xg Sinha e(a, xg, x1) = 0.

(3.2)

Introduce now the commutative, co-commutative Hopf algebra generated by a new generator
x with dimensions of an action, such that

[x.all =0 AR=3®1+1® % S(R) =—% e(x) =0. (3.3)

If we now make the redefinition = x —mcxg using the one-cochaincxg (which diverges
in the contraction limit) it follows that

Ax=x®1+1® x —mc[xo® (coshe — 1) — x; ® sinha]

3.4
S(x) = —x + mc[xo(cosha — 1) + x; sinha]. (3.4)
In terms of x, the commutators in (3.3) imply
mc mc .
[Xv .XO] = O [X’ -xl] = 7)(:1 [Xs a] = 7 Slnha (35)

and we see again that in order to have a sensible contraction limit we need to substitute
kc for k, in which case equations (2.12) and (2.13) are recovexe¢t (v/c) and hence
Fune(Gum). Thus, there is full duality and closure among the algebra-like contraction
diagrams foils; (G(m)) [1] and the group-like ones for Fu(G(m)).

A question that naturally arises is whether we can construct a similar extended group
algebra from the Galilei deformation FuitG) dual of Uz (G), equations (1.1). A8/ (G),
Fun: (G) has a bi-crossproduct structure so that the dualization (in two dimensions) of
U(B)-4l; (Tr,) leads immediately to FuiG(1+ 1)) as (cf (2.1))

2

1
[t’x] ==X [X,U] = L~ [l, U] :—g

) x ‘ 3.6)
At=tR1+1®t Ax=x®1+1®x—-tQuv Av=1v®1+1xv (3.
S, x,v) = (—t,—x — vt, —v) e(t,x,v) =0.

Let us add a Fui/(1)) factor to FuR(G) (a similar discussion could be presented for
U:(G)). Since we want the corresponding algebra generator to be cen@ld), o has

to be trivial and hence its dud is also trivial. The two-cocycle condition for the map
Vv :A— HQ® H (hereA = FunU (1)), H = Fun:(G)) may be found as a consequence of
the co-associativity requirement. It is given by [7]

A (a) PP (ag)) ® Tiaw)Pagd = ¥aa)® ® Ay (aq) PV (ae) (3.7)

where the lower indices refer to the coproduct and the upper ones refer either to
(Bla) = a® ® a® € A® H) or to the components of (¥ (a) = V(@) ® ¥(a)®).
Since the right co-actiorg is trivial in our case,a® = a,a® = 1. Moreover, since
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Y1) =1y ®1ly andAa =a®1+1Qa,i.e. Ay = x ®1+1® x, equation (3.7) reduces
to

AYGOP VNP + Y () ®1=9 (P @ AY(NP +1®@ ¥ (x) (3.8)

(it is easy to check, we note in passing, that (2.16) forkIECFr(}n)) satisfies condition (3.8)).
Thus, in the search for a FufG) we have to look for aj(x) which in the undeformed

limit must reduce to the last term in (2.10). The usual dimension assignments (which we
have consistently kept) indicate thak aleformation of the Galilei two-cocycle (last bracket

in (2.10)) may be described by

- - mv?
Ye =¥ (x) <1® f <E~>> . (3-9)
K
Omitting the constants we may now impose the two-cocycle condition (3.8)—(3.9) written
asyz o x ® vf (v?) — 3t ® v2 £ (v?). This leads to

Ax @ vf(v®) — SAT @ V() +x ®vf (V) @ 1— 2 ® vV f(1) ®1
=x @ AWf(?) — 5t ® AW f () + 1® x ® vf (v7)

—31®t®vif(v?) (3.10)
which implies

A@f®?)) =1®vf (") +uf () @1

A@F(0%) = 1@ v f (7)) + 02 (%) ® 1+ 20 @ vf (v).
These equations are inconsistent with the formiefin (3.6) and among each other unless
f is constant. Thusy is unmodified byk and Ay is again given by (2.13). We may
now try to complete the commutation relations in (3.6) with thosexfdsy imposing that
the coproduct (as given by (3.6) and (2.13)) is an algebra homomorphism. Notice that
the addition of a two-cocycle does not modify the expressions (3.6); only the commutators
involving x and A x need to be found. The result is that there is no solution in the presence

of i if the constantf is non-zerg. This agrees with the fact that nedeformation of the
Hopf algebral/(G.)) can be obtained frortY, (P) x U (u(1)) by contraction [1].

(3.11)

4. Structure of the non-standard (1 + 1) deformed Poinca group and their Galilean
contractions

A non-standard deformatioty;, (P) of the Poincaé Hopf algebra may be obtained by
contraction from théf, (sl(2, R)) deformation [18,19] and has been recently studied [20—
22]. We shall show first that it has a bi-crossproduct structure and then study its Galilean
contractions.

In a ‘light-cone’ basid{,(P(1+ 1)) (p is the parameter remaining after the contraction
limit ¢ — O which is performed after setting = ¢p, [e] = L~ = [p~1]) may be written
in the form

2p

AP, =P, ®1+1Q P, AP_ =exp(—2pP;) @ P-+ P-®1 (4.1)
AP_ =exp(—2pPL) @ N+ N ®1 S(N) = —exp(2pP,)N
S(Py) = —P; S(P_) = —exp(2pPy) P_ €(N, Py) =0.

[N, P.] = [N.P]=-P. [P, P]=0

1 This result disagrees with that in [17] in as much as the projective representations;gtare related to a
two-cocycle Hopf group algebra extension (which is not discussed there).
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U,(P(1+ 1)) has a bi-crossproduct structute= H~«.A where in this casé{ is generated
by N with primitive coproduct andA is the Abelian Hopf subalgebra éf,(P(1 + 1))
generated by the translation®., the right actionee : A ® H — A and left coaction
B :H— A® H being given, respectively, by

1—exp(—2pPy)
P, <N = R Fa— P_.<aN=P._ B(N) =exp(—2pP,) ® N. (4.2)

We may easily see, for example, that the formulae which give the coproduct and antipode
in K [7],

Ax(h®a)=hgy @hy hy

/C( ®a) == (1 ® %) aqy ® %) ®a(2)

Sth®a) = (13 ® Sa(hPa)) (S (h?) ® 14)
immediately reproduc& N andS(N) (N is represented if€ by N®1 and, in equation (4.3),
N® = exp(—2pP;), N® = N by (4.2) etc). It is simple to construct by duality
({P+,x+) = 1) the associated non-standaft + 1) spacetime Hopf algebra, which is
defined by the relations
[x4,x_ ] =—2px_ Axye =x: Q1+1Q x4 S(xy) = —x4 e€(xy) =0.

(4.4)

We are interested here, however, in constructing the whole dual Hopf algebra
Fun,(G(1 + 1)) and its possible extension, and in obtaining them from Bl + 1)).
Denoting the variable dual v by «, (N, «) = 1, and using the fact that,(P(1+ 1)) is
a bi-crossproduct, the duaglsof « anda (>) of g are found to be

B(xy) = x1 @ € xyba=—-2p(1—e% x_sa=0 (4.5)

(to find, e.g.,x+ >« one needs considering for powers of N, S(N™)). In this way the
non-standard Poinca Hopf algebraFun, (P(1+ 1)) is found to be

(4.3)

[xi, 0] = —2p(1—€%) [x_,a] =0 [xy,x_] = —2px_
Ax; =1Qx +x,. Q€ “ Ax_ =1Qx_+x_ Q€
Ae=a®1+1Q« Sxy) = —xp &
Sx_)=-—x_€e*° S() = —«a €(xy,a) =0
which reproduces [22, 20].
We now find thenon-standard deformed Galilei groupun,(G(1+ 1)). In terms of the
standard o = x; + x_, x; = x4 — x_) basis, Fup(P(1+ 1)) is given by
[xo.a] = =2p(1—€7%) [x1, o] = =2p(1—€7%)
[x0, x1] = 2p(x0 — x1)
A =a®1+1Q« Axp = 1® xg + xg ® coshe — x; ® sinha

(4.6)

4.7
Ax1 = 1® x1 — xo ® Sinha + x1 ® coshx @.7)
S(a) = —« S(xg) = —xpcoshe — x; Sinha
S(x1) = —x1 cosha — xg Sinha e(o, x9,x1) =0

which reproduces, in the co-algebra sector, the stanédqdd+ 1) group law. The non-
standard deformation FytG (141)) now follows from thec — oo limitfor xo = ct, x; = x
anda ~ v/c, with the result

At=1®r+1r®1 Ax=1x+x®1—-r®v Av=1Rv+vR®1l
[t,v]=0 [x,v] = —2pv [2, x] = 2pt (4.8)
S@t) =—t Sx)=—x —vt S) = —v.
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The dual algebréd/,(G(1+ 1)), is easily found to be
(X, X1=0  [X,VI=—, A-exp—4pX)  [X,V]=0
0

AX, =X, @1+ exp(—20X) ® X, AX=10X+X®1 (4.9)
AV=V@1l+exp—20X)®V S(X,) = —exp20X) X,
S(X)=-X S(V) = —exp2pX)V e(X,,X,V)=0.

It is not a new Hopf algebra,; it is the deformed Heisenberg—Weyl algih(a W) (the
quantum Heisenberg grouf, (1) of [23]), and it has both a bi-crossproduct and a cocycle
bi-crossproduct structure [5].

To complete the picture, it is interesting to close the contraction diagrams by obtaining
U,(G(L+ 1) (= U,(HW)), equations (4.9), by contracting,(P(1 + 1)) in (4.1) by
means of the standard redefinitions. It turns out, however, that thes rcdhange of
basis Py = %(P+ + P_), P, = %(PJr — P_)) from light cone to standard variables
is not adequate, and that a more complicated one (which may be justified [22] in
terms of T matrix [24] considerations) is required to perform the contraction, namely,
P, = Py+ P1, P_ = (1/2p)[exp(—2p(Py + P1)) + 1 — 2exp—2p Py)]. In terms of these
Py 1 generators the algebid, (P(1 + 1)) is more complicated than in (4.1), but may be
seen to lead té{,(G(1+ 1)), equations (4.9), in the contraction limit.

Finally, we may look for anon-standard extended Galilei groufyhis can be obtained
following the by now familiar procedure, which involves the additionyoés in (3.3), and
the redefinitiony = x 4+ mcxo. Then (4.7) leads to (3.4) and to

[x,x0] =0 [x, x1] = —=2mep(xo — x1) [x.a] =2mcp(l—e™). (4.10)

Equations (4.10) show that the contraction requires a redefinition of the deformation
constant,p = p/c% [p] = L3T~2. This leads to FunG, (1 + 1)) defined by
equations (2.1) and (2.13) together with

[x.11=0 . x] = —2mpt [x.v]=0. (4.11)

Funﬁ(é(m)(1+ 1)) is a very mild deformation, only manifest in thg,[x] commutator.
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